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Overlap integrals of B functions™

A numerical study of infinite series representations and integral representations
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Two different methods for the evaluation of overlap integrals of B functions
with different scaling parameters are analyzed critically. The first method
consists of an infinite series expansion in terms of overlap integrals with equal
scaling parameters [ 14]. The second method consists of an integral representa-
tion for the overlap integral which has to be evaluated numerically. Bhat-
tacharya and Dhabal [13] recommend the use of Gauss-Legendre quadrature
for this purpose. However, we show that Gauss-Jacobi quadrature gives better
results, in particular for larger quantum number. We also show that the
convergence of the infinite series can be improved if suitable convergence
accelerators are applied. Since an internal error analysis can be done quite
easily in the case of an infinite series even if it is accelerated, whereas it is
very costly in the case of Gauss quadratures, the infinite series is probably
more efficient than the integral representation. Overlap integrals of all com-
monly occurring exponentially declining basis functions such as Slater-type
functions, can be expressed by finite sums of overlap integrals of B functions,
because these basis functions can be represented by linear combinations of
B functions.

Key words: Overlap integrals — Exponentially declining atomic orbitals —
Numerical quadrature — Convergence acceleration

1. Introduction

The problem of evaluating overlap integrals of exponentially declining functions
such as Slater-type functions both accurately and efficiently occurs not only in
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ab initio calculations but also in semiempirical calculations and in solid-state
theory. Consequently, overlap integrals of Slater-type functions and of other
exponentially declining functions have already been investigated by numerous
authors and yet, it seems, that no definite conclusion about the optimal approach
has been reached so far. )

In this article we shall consider a special class of exponentially declining functions,
the so-called B functions, which are defined by [1]:

Bri(e, r)=(2/m)" 2" (n+ D)1 ar)"™ 72K,y a(ar) YT, ¢),
acR,, neZz, n=-L (1.1)

Here, Y;" stands for a spherical harmonic using Condon-Shortley phases and
K, _,/; denotes a modified Bessel function of the second kind [2]. R, denotes
the set of positive real numbers and Z the set of positive and negative integers.
Scalar B functions are essentially reduced Bessel functions as introduced by
Shavitt f28].

At first sight, this choice may appear to be somewhat surprising since B functions
are relatively complicated mathematical objects. However, the currently most
promising approach for the evaluation of molecular multicenter integrals is based
upon the Fourier transform convolution theorem which was introduced into
quantum chemistry by Prosser and Blanchard [3]. Hence, if one looks at the
momentum space properties of B functions it turns out that their Fourier trans-
forms B are of exceptional simplicity [4]:
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Y7'(p/p)- (1.2)
The Fourier transforms of other exponentially declining functions such as Slater-
type functions or bound-state hydrogen eigenfunctions are significantly more
complicated. In articles by Niukkanen [3] and ourselves [4, 6, 7] it was shown
that the Fourier transforms of all commonly occurring atomic orbitals can be
expressed as linear combinations of Fourier transforms of B functions. In view
of the Fourier transform convolution theorem [3] this also implies that overlap
integrals of all the other commonly occurring atomic orbitals can be expressed
as finite sums of overlap integrals of B functions. Hence, it is sufficient to study
overlap integrals of B functions for which we use the following notation:

Sizmi(e, B, R) :f B} (e, r) B2 (B, r=R) dr (13)
Overlap integrals of B functions were already studied by several authors [1, 4,
5, 8-15]. Computationally particularly troublesome are those cases in which the
two scaling parameters « and 8 are different. In this article, we shall compare
two different approaches to overcome these computational problems. Recently,
Bhattacharya and Dhabal [13] proposed to use a one-dimensional integral
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representation for overlap integrals which, however, they had to evaluate numeri-
cally using Gauss-Legendre quadrature. On the other hand, we were recently
able to derive some new infinite series expansions for overlap integrals [ 14] which
converge quite rapidly if suitable convergence accelerators are applied. In the
following, we want to compare critically the relative merits of these two
approaches.

As overlap integrals are basic entities occurring also in formulas for more
complicated molecular integrals, it is of considerable interest also for the purpose
of evaluating other molecular integrals to investigate which would be the most
efficient way of evaluating overlap integrals of B functions.

2. Different expressions for overlap integrals

The Fourier transform convolution theorem [3] makes it possibie to express an
overlap integral as an inverse Fourier integral:

Jf*(r)g(r—R) d3r=J e " f*(p)g(p) d’p. (2.1)

Here, f and g are the Fourier transforms of f and g, respectively. If we combine
this relationship with the Fourier transform of a B function, Eq. (1.2), and if we
linearize the product of the two spherical harmonics by introducing Gaunt
coeflicients [16],

(Lma|Lmy|lm,) = J- YTHQ) Y7(Q) YD) dQ, (2.2)
we then obtain for the overlap integral of two B functions [4, 14]:
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The limits of the ! summation in Eq. (2.3) follow from some selection rules
satisfied by the Gaunt coefficients [16], and the symbol £ indicates that the
summation proceeds in steps of two.

In the case of equal scaling parameters, & = 3, the remaining Fourier integrals

in Eq. (2.3) pose no problems since they can be expressed by finite sums of
Fourier integral representations of B functions [14]:

o e (=ip)'YT(p/)
2 (a2+p2)n+l+l
Thus, the overlap integral of two B functions with equal scaling parameters is

given by the following simple sum of B functions [1]:

(2.4)
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In the case of different scaling parameters « and B it is much harder to do the
remaining integrations in Eq. (2.3) since a straightforward application of Eq.
(2.4) is not possible. Hence, first the denominators in Eq. (2.3) have to be
transformed in such a way that Eq. (2.4) becomes applicable. So far, three different
techniques, which accomplish this transformation, were described in the
literature: Partial fraction decompositions, Taylor expansions, and integral rep-
resentations.

If we use a partial fraction decomposition for (a’+p*) ™™ 41 (B2+p?) k!
[4] in Eq. (2.3), we can derive the so-called Jacobi polynomial representation
for the overlap integral with different scaling parameters [1]:
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Al =(I-1+1,)/2, AL=(+1-1L)/2. (2.6b)

Here. P{™*) is a Jacobi polynomial. The original derivation of Eq. (2.6) was
relatively complicated since it involved some nontrivial manipulations of special
functions [8]. However, this derivation could later be simplified considerably,
and the contribution of three-dimensional delta functions, which occur quite
naturally in the theory of B functions [17], was also analyzed [14]. An algorithm
for the partial fraction decomposition of more general rational functions than
the ones occurring in Eq. (2.3) was discussed by Niukkanen in an article on
convolution integrals [12].

The Jacobi polynomial representation for overlap integrals, Eq. (2.6), allows a
very economical evaluation of overlap integrals [9, 11, 13]. However, in Eq. (2.6)
there are terms which become singular for @ » 8 and for R —» 0. This implies that
Eq. (2.6) will yield reliable resuits only if the two scaling parameters « and 8
differ by a sufficient amount, and if R is large enough. Outside these regions
alternative representations have to be used.

The first attempt to overcome the stability problems of the otherwise very efficient
Jacobi polynomial representation, Eq. (2.6), was to use one of the following two
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Taylor expansions of an overlap integral with different scaling parameters in
terms of overlap integrals with equal scaling parameters [11].

wlm wat1 2 (n+L+1),
ST (o, B, R) = (a/B)*M 071§ A

v=0 V!
2 _ 2\ v
X(Egz—a“) Sy, (B, B, R) (2.7)
20, +1,—1 (m+hL+1), B\
~(Bfayni § (a)
X Sy " (o, a, R). (2.8)

The infinite series in Eq. (2.7) converges for |1 — (@/8)’| <1, whereas the infinite
series in Eq. (2.8) requires |1 — ( 8/ a)|> < 1. The easiest way to derive these infinite
series is to use the Taylor expansion

(§+p2)nll(n+2)n112

2 2\ v

(n+l+1) ( §2) (29)
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in Eq. (2.3). The computational problems associated with the two infinite series
expansions (2.7) and (2.8) were already discussed quite extensively in the literature
[9, 11, 13, 15], and it was found that for larger differences of the scaling parameters
« and B convergence could become quite slow. However, it should be emphasized
that even in the case of slow convergence the infinite series (2.7) and (2.8) are

able to produce reliable numbers.

The not entirely satisfactory convergence properties of the infinite series (2.7)
and (2.8) motivated us to look for alternative, more rapidly convergent series
expansions for overlap integrals. We found that this aim can be accomplished
with the help of the following generating function for terminating hypergeometric
series ,F; [14]:

(a2+p2)~nlvll-l 2+ 2y—n,—l,—-1
p
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Inserting this into Eq. (2.3) yields [14]:

(2.10)
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Since the terminating hypergeometric series ,F; in Eq. (2.11) can be computed
with the help of a stable three-term recurrence formula [14], the terms of the
series in Eq. (2.11) can be computed just as easily as the terms in Egs. (2.7) and
(2.8), respectively. However, we found that in all practically relevant cases the
infinite series in Eq. (2.11) converges faster than the infinite series in Egs. (2.7)
and (2.8).

Finally, the well-known Feynman identity can be generalized to give [18]

(m+n—-1)! J" RS )

a"h " = dr, (2.12)

(m—-D1(n=1)!Jo [at—b(1—1)]""™"
With the help of this relationship one obtains for the numerator in Eq. (2.3):
L _ +a,+h+L+1)!
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(2.13)

If this integral representation is used in Eq. (2.3), and if the order of integrations
is interchanged one obtains an integral representation for the overlap integral
with different scaling parameters [10, 13]:
S St "s( g, B, R) = a?"h gAnsth! (m+n+hL+5L+1)!
v (n+ 1)1+ L)!
J’l n +Il(1 x)nz—H2
X -
['y(a Ba x)]2n e, L+ -2
x Szem(y(a, B x), y(e, B X), R) dx (2.142)
(e, B; x) =[x +B*(1-x)]"% (2.14b)

No simple closed form expression is known for the remaining integral in Eq.
(2.14). Consequently, it has to be evaluated by numerical quadrature.

3. Numerical properties of different representations for overlap integrals

In this section we want to compare how the new infinite series expansion (2.11)
does in comparison with the integral representation (2.14) which has been
recommended strongly by Bhattacharya and Dhabal [13].

It was mentioned earlier that the infinite series (2.11) normally converges more
rapidly than the older series expansions (2.7) and (2.8), respectively. A further
improvement of the rate of convergence can be achieved if suitable convergence
accelerators are applied. We tried several nonlinear accelerators, for instance
Levin’s u transformation [19] and Brezinski’s 6 algorithm [20], but we found
that in the case of Eq. (2.11) Wynn’s ¢ algorithm [21] gives the best results since
the number of terms, which is required to reach a certain accuracy, is reduced
drastically. Also no numerical instabilities induced by the nonlinear transforma-
tion were observed [15].
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Since the use of such extrapolation methods is not yet very well known among
theoretical chemists we want to sketch briefly how we apply Wynn’s ¢ algorithm
for the acceleration of convergence. Let {s,} be a sequence of partial sums of an
infinite series,

S, = 2 a4, n=0. (3.1)
v=0

Then, Wynn’s ¢ algorithm is given by the following two-dimensional nonlinear
recursive scheme [21]:

e=0, =5, (3.2a)
gl =gt Dyel* M7 m on=0. (3.2b)

Only those elements of the ¢ table with even lower index can be used as
approximations to the limit of the series. The elements of the type &%, are only
intermediate quantities. Hence, if we know the partial sums s, . .., S2, We use

5 as an approximation to the limit, and if we know the partial sums s,, . . ., Sy,

we use &5 as an approximation to the limit. This can also be expressed in the
language of Padé approximants. Let f(z) be a function which is analytic in a

neighborhood of zero,

f2)= ¥ ach (33)

and let [L/ M];(z) be the Padé approximant which agrees with the power series
(3.3) up to terms of order 0(z**™*"). Then, it can be shown [22] that the &
algorithm yields the upper half of the Padé table,

esp =[k+n/kl/(2). (3.4)

Hence, in our case we always use the following staircase sequence in the Padé
table as approximants to the limit:

[0/01,[1/01,[1/18, ..., [v/v],[¥+1/v],[v+1/v+1],... (3.5)

Finally, we would like to mention that there is not only practical but also strong
theoretical evidence that the ¢ algorithm is able to accelerate the convergence of
the infinite series in Eq. (2.11). For instance, assume that in the limit of large
summation indices a sequence of partial sums {s,} satisfies

Sp~s+A™m® Y en, co# 0, n~> 00 (3.6)
r=0
Now, if [A|<1 and 6#0,1,..., k—1, the application of the ¢ algorithm to this
sequence gives [23]
CO)\n+2kn9~2kk!(_6)k
(A _ 1)2k

Obviously, this represents a considerable improvement of the rate of convergence.
The above analysis can be applied to the infinite series in Eq. (2.11) since in the

e =5+ (1+0(n7")). (3.7)
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limit of large summation indices the partial sums of Eq. (2.11) are of the form
of Eq. (3.6) [15].

If one tries to use the integral representation (2.14) for the evaluation of overlap
integrals one first has to choose a quadrature method. If only a relatively small
number of overlap integrals is to be evaluated, and if the values obtained in this
way should have a certain guaranteed accuracy, then it is a good idea to use an
adaptive quadrature routine such as the IMSL [24] subroutine DCADRE which
was used by Trivedi and Steinborn [10] when they first investigated the numerical
properties of the integral representation (2.14). The underlying philosophy and
the performance of DCADRE is described in a book by Rice [25]. However, an
adaptive algorithm will quite often require more integrand evaluations than other
quadrature methods. The reason is that a good adaptive algorithm is rather
cautious about accepting a result as being correct up to a certain accuracy. It
usually does some extra integrand evaluations in order to confirm its preliminary
conclusions.

Hence, if efficiency rather than reliability becomes the decisive issue, adaptive
quadrature methods are not particularly attractive. In such cases, Gauss formulas
which not only optimize the weights but also the abscissae, are very popular
since they are known to produce high accuracy at low cost for reasonably
well-behaved integrands. Accordingly, Bhattacharya and Dhabal [13] used
Gauss-Legendre quadrature for the evaluation of the integral representation
(2.14). However, from the general theory of Gauss quadrature [26] one may
immediately conclude that Gauss-Legendre formulas, which are derived for the
weight function w(x) =1, are not the optimal choice for evaluating the integral
in Eq. (2.14). The reason is that the integrand in Eq. (2.14) contains the factor
x"*(1—x)"""2 which is also the weight function for some special Jacobi poly-
nomials. Consequently, we may expect that appropriate Gauss-Jacobi formulas
will do better than Gauss-Legendre, in particular for larger quantum numbers.

In Tables 1-3 we compare the performance of the infinite series (2.11) with the
infinite series accelerated by Wynn’s ¢ algorithm, Eq. (3.2), and with Gauss-Jacobi
and Gauss-Legendre quadratures of Eq. (2.14). The number N in the first column
of the tables corresponds either to the number of terms of the partial sums of
the series (2.11) or to the number of integration points used in the quadratures.
Hence, in all cases it indicates how many overlap integrals with equal scaling
parameters, Eq. (2.5), had been evaluated. The computational complexity of an
overlap integral with equal scaling parameters depends only upon the angular
momentum quantum numbers I, m,, L, and m,, and not upon the orders n,
and n, of the two B functions in the integral. Consequently, N is a relatively
good measure of the numerical costs of the different computational methods.
The “exact” values given in the last row of the tables were obtained from Table
IV of [15]. The weights and abscissae for both Gauss-Jacobi and Gauss-Legendre
quadratures were computed with the help of the subroutine DO1BCF from the
NAG library [27]. The computer which we use now has in Fortran Double
Precision an accuracy of 15 to 16 decimal digits.
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On the basis of the results presented in Tables 1-3, which according to our
experience are quite typical, one is tempted to conclude that Gauss-Jjacobi clearly
does best and that Gauss-Legendre is slightly better than the accelerated series
(2.11). However, the situation is not as simple as it looks. The above conclusion
is certainly correct if one only has to calculate a single overlap integral and if
one knows in advance how many integration points will be needed to produce
some given relative accuracy. But such circumstances are certainly the exception.
Normally, one has to calculate a large number of integrals with various different
sets of quantum numbers and with a wide range of possible scaling parameters.
Then a very serious defect of the otherwise “superaccurate” Gauss formulas
comes into play. Let Ex(f) be the quadrature error of an N point Gauss rule
associated with some weight function w(x) and a=x=b,

b N
EN(f)=J‘ w(x)f(x) dx—kZ wif (xi)- (3.8)

a =1
Here, w, and x; are the appropriate Gaussian weights and abscissae, respectively.
Then, it is well known that the quadrature error Ex(f) can be estimated by the
2 Nth derivative of f [26],

Ex(f)=Cnf®N(¢), a<g<b. (3.9)

The constant Cn depends only upon N and the weight function w but not
upon f.

Thus, if we would want to apply this theoretical error estimate we would have
to know a bound on the 2 Nth derivative of the integrand in the integral representa-
tion (2.14). Clearly, this is very unpractical and the error analysis has to be done
numerically.

In practice, this means that if one wants to find out whether an N point quadrature
rule has already produced the required accuracy one has to compare it with
another, say (N + K) point rule. Unfortunately, Gaussian abscissae are in general
different for different orders N. This implies that this simple convergence check
requires already 2N + K integrand evaluations. If such convergence checks have
to be done repeatedly Gauss quadrature soon becomes hopelessly uneconomical.

Consequently, if one would have to calculate a somewhat broader class of overlap
integrals and if one would want to use the integral representation (2.14) in
connection with Gauss quadrature, it would be advisable to avoid any internal
error analysis at all. Instead, one would first determine experimentally how many
abscissae are needed to produce the required accuracy even for those integrals
which are believed to represent the most unfavorable cases. Then, all integrals
would be evaluated with this fixed number of abscissae.

Apart from the fact that such a “worst case design” is not entirely satisfactory
from a theoretical point of view - one can never be sure that one really found
the worst case - it also reduces the efficiency of Gauss quadratures considerably
since many overlap integrals would then be computed with an accuracy which
is higher than actually needed. Such problems cannot occur in the case of the
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infinite series (2.11) even if it is accelerated, because an internal error analysis
is quite simple.

Consequently, we feel that it is by no means clear whether the infinite series
(2.11), if it is accelerated by Wynn’s & algorithm, Eq. (3.2}, is really inferior to
the integral representation (2.14), if it is evaluated by means of Gauss-Jacobi or
Gauss-Legendre quadrature rules. In our opinion, the answer to this question
will not only depend upon the number and types of overlap integrals, which are
to be calculated, but also very much upon the computer implementation. But we
feel that an efficient implementation can be accomplished much more easily in
the case of the infinite series (2.11) which allows a simple and economical internal
error analysis even if it is accelerated.

Finally, we would like to remark that if one has access to a good adaptive
quadrature program such as the IMSL [24] subroutine DCADRE and if efficiency
is not of particular importance, then the simplest way to compute overlap integrals
of B functions would be to use the integral representation (2.14) in connection
with this adaptive quadrature routine. One would only need a program for overlap
integrals with equal scaling parameters according to Eq. (2.5) which would be
relatively simple. All the error analysis of the quadrature would then be done by
the computer.
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